Wednesday, June 7, 2017

Interview with Ugo Bardi: Climate, Fossil Fuels, Resources and All That

The MEDEAS project team at a recent meeting in Barcelona. At the center, the project coordinator, Jordi Solé, Another group of well-intentioned people engaged in saving the planet. Yes, we know it is difficult: we are doing our best. 


This interview was recorded this February and is reported here from the site of the European Project MEDEAS, only minimally edited. Take into account that none of the people involved (interviewers and interviewed) are native English speakers and you can understand why the grammar and the syntax are, well, let's just say "not perfect". Then, as in all non-edited interviews, the flow of the concepts is also far from being perfect. However, I thought to reproduce it here because it contains much of what I have been trying to say, lately. Maybe you'll find it interesting (U.B.)


On 17th February 2017, during MEDEAS first General Assembly in Brno, Czech Republic, Ugo Bardi from INSTM, partner of MEDEAS Project was interviewed by Mikuláš Černík for Deník Referendum, an independent online newspaper focused on social and environmental issues. The interview discussed how science nowadays can address challenges as climate change and possible limitations of resources for the transition to a low-carbon economy. The whole interview can be found below in English, while the original version is published in the newspaper’s webpage



INTERVIEW WITH PROF. UGO BARDI (UNIVERSITY OF FLORENCE, ITALY), IN BRNO, CZECH REPUBLIC (17.2.2017) DURING MEDEAS GENERAL ASSEMBLY.

Your main topic is resource depletion. Since the release of your book on the Limits to Growth, how has the situation changed?

The thread that runs through everything I study is resource depletion in the broadest sense. You can restrict its sense to minerals, which is to take the core meaning, but then there is also climate change. Climate change can be seen as the depletion of the atmosphere’s ability to absorb greenhouse gases without overheating. So it’s also depletion—everything’s a question of depletion. And everything is a question of resources. People have spoken about limits to growth, which at one time was a very innovative concept, but these limits on growth derive from limits on resources, and that’s something we’re still working on.

You’re writing a blog called the Cassandra Legacy. How did you, as a scientist, decide it was necessary to write a blog?

Because many people speak about there being two cultures, humanist culture and scientific culture. And in my modest opinion, this is completely wrong. There are no two cultures, there is only one culture. And so a scientist should be within the limits as much as possible, should be a humanist as much as possible within the limits, should know something about hard science such as thermodynamics and physics, and so on. But unfortunately our world has fallen into the trap of overspecialization, which means that a lot of people study so much that eventually they know everything about nothing—which is the definition of a specialist. So we have specialists who know absolutely everything about nothing, which is a little useless in my opinion. So we need a modern view of science, and this is a concept that some of us are working on. It’s a new conceptualization that tends to deemphasize what we call “reductionist science”. To emphasize what we call “systemic science”, which looks at changes at the whole-system level. Because if you are a reductionist, you would say What is the problem? I’m slowly running out of fuel for my car. So you say, No problem, hydrogen will fix everything. If you follow a systems approach, you say well, okay, maybe hydrogen is a way to change the system, but how will the system react? I think that’s a fundamental part of the MEDEAS project we’re working on. To take a systems approach. We have a valuable collaborator in Brno as well. We’re sure we can get this done.

Do you think that, as a scientist, when you publish a scientific paper, it has any impact on a broader readership and on the general public and policymakers? How do you perceive the relationship between science and politics?

There is no difference. Scientific communication is just one of many kinds of communication. And that has to do with the fact that we communicate within a system. The world—call it the mediasphere or the cybersphere or the brainsphere—the world is a huge system in which ideas, comments, novelties, the news and everything moves and competes in a space. All these things grow, they evolve, they change and they take over spaces, and that’s the most “systemic system”, if you like. It is hugely interesting to study, and that’s what we’re doing. You might not have noticed, but my coworkers and I are developing models for dissemination, for spreading ideas in the websphere, the world wide web, in the mindspace. What we’ve discovered is that your message—you want to know the theory of messaging my coworkers and I are developing? Messages are made up of two parts—the message itself and the communicator who sends it. So the message must be simple enough that it can reproduce, but that’s not enough. The message has a signature that makes it recognized as ‘self/nonself’ and if it is not recognized as “self” it is discarded and the whole attempt to transmit it is useless. So what you do when you send the message is you send yourself. And that’s it. You don’t always hit people with facts. The relevant fact is you, because you are relevant. If you are relevant, you send a message which is understood. You need to understand who is sending the message, you need to understand what a person is. So if you don’t know what you are, you can’t send the message.

This leads me to the next question. Don’t you think that, when scientists put out messages to the public, the public may believe in their correctness and yet feel that what they say is overly pessimistic? That they’re not enough to make them change their behaviour? I’m talking about alarmism. Some people argue that when you scare people too much, as a consequence they won’t be willing to change their behaviour. Do you agree?

This is because most scientists are children when it comes to communication. They know very little, nothing in this field. I won’t use the term ignoramus, but the definition is that when you don’t know anything about something, you are an ignoramus on that topic. Scientific education doesn’t cover communication. So when you try to do work in a field you’re ignorant of, you may achieve zero. And you’re likely to make mistakes. Just think of riding a bicycle for the first time. You don’t know what a bicycle is, what pedals or brakes are, and so on. You don’t really know how a bicycle works. You fall off the bike straightaway. This is what happens when scientists try to communicate all these pessimistic things about climate science to the public. They’re using the wrong communication model. Their message—its penetration—doesn’t depend upon pessimism or optimism. This is a mistake. Think about Christianity. What is the message? It is that there will come an apocalypse. And it is spread easily. Even though it’s predicting an apocalypse. Because Christians knew much better - the old, the ancient Christians, they knew how to promulgate their message. They were able to emphasize the messenger. If you’re willing to get eaten by lions, then the message is important for you, it carries weight. But you must be ready to be eaten by lions to demonstrate the message is real and that, I think, scientists are not willing to do for Climate Science. Maybe we don’t need to arrive to that point but the essence is the same - it doesn’t matter if the message is optimistic or pessimistic. The power is not in the message, it’s in the messenger. The messenger must be believable and this is the problem with climate science. Scientists have made a lot of mistakes and they are presenting a contradictory message. Some scientists say, “don’t worry, we have the solution: you don’t have to do anything” and maybe they start babbling about hydrogen or nuclear energy or whatever. Other scientist say, “well, you have to make sacrifices” and they talk about investing in double paned glasses, using bicycles and the like. But these two messages are not compatible with each other. And if the messenger doesn’t send a coherent message, he or she is not believed.

What about the term peak oil—which was much more widely used in the recent past than it is today. Could you tell us how this term has evolved in public debate?

It’s a good example of how to spread a message. Generally because the message was simple: just two words. “Peak oil”. It has a ring to it, it was interesting, and it was simple enough to spread. And spread it did. These messages have a cycle. They peak, and then they go down. But I think the spread of this message was successful in the sense that it was not only viral, but became part of our culture. Its greatest diffusion came around ten years ago. Then it lost popularity a bit because people had difficulty understanding the term. They see that oil isn’t expensive right now and think that’s because it’s abundant. But that changes. It’s like limits to growth. It was criticised, rejected, demonised, but it was a successful concept, because it is still with us. We debate it, maybe over a long period, but still we debate it. And that’s what we can do with messages. They don’t necessarily need to take over the world, but they remain with us. They can’t be ignored.

Could you also tell us something about the project you’re currently involved in? About MEDEAS; and how it is changing the debate?

MEDEAS is an extremely important project, as a next step after Paris. Paris COP21 told us what we should do, and it was a very good meeting with a huge impact because the communication was taken care of by people who knew what they wanted to do. To have a message which will take root, it must be simple. So Paris - we had thousands of people, hundreds of models, tens of thousands of scenarios, the whole climate science with uncertainties and things like that and final result was one number: 2 °C. You condense everything into something like a piece of genetic code which will then be unpacked. You send a little virus to the mind with a very tiny chink of genetic code. It takes up residency in your brain. It reproduces and grows.

So do you really think the Paris agreement is a step forward in tackling climate change?

Absolutely. It was a remarkable success because it was well packaged. But the numbers in it are not enough, because we don’t know how to achieve them. And that’s what MEDEAS is answering. We give you another number—how much it will cost? If we can afford it and the degree of sacrifice it entails. How much are you willing to pay for your survival?

Let’s imagine that we achieve a post-carbon future. Who will be the loser and who the winner in the transition?

Some scientists in the MEDEAS group have developed a concept they call Thanatia, which refers to a world not meant to be—one in which people have survived, but the planet has died in terms of minerals. This means there is no longer any ability to mine rare minerals, and these minerals are what allowed us to build our civilization. The result is a future that is completely different. There are no more mineral resources like oil and cobalt, because these mineral resources are concentrated—you can’t just find them anywhere you want. If you need something that you lack but someone else has, you may have to fight to get it. But in the future, this will no longer be done, because we will stick to resources that are abundant, like sunlight, silicon, aluminium, magnesium, etc. Society can be built in a locally-structured way that may give rise to less competition for resources and fewer wars.

In our country, the Czech Republic, if we want to achieve what was promised in the Paris agreement, we need to cut our coal consumption, despite its abundance as a resource. How would you advocate this position with the public?

I don’t think this is such a big problem. I mean, the Czech Republic is a very small part of the world and of what’s going on in the world. And if the world starts moving in a certain direction, the Czech Republic will follow. We have coal in Germany, in Poland, in Ukraine, and these regions are burning it. It has to be phased out slowly, and I think we are moving in that direction because the cost is really increasing. Coal is not as cheap as it seems. In the future, you won’t be able to afford to burn the coal, whatever the politicians may say. Mr. Trump said “we have a thousand years of coal” and this is an alternative fact, in other words, a lie. I think we will cease to burn coal sometime over the next decade or two. And hopefully we will do so because we have agreed to stop burning coal and also because we have agreed to deploy renewable energy and replace it.

So basically what you’re saying is, the sooner we make the move, the more we gain?

Yes, that’s correct. The change is going to take place anyway. People talk about problems and that’s bad. Once you say there are problems, you begin to think of solutions. But not all problems are problems, and not all solutions are solutions. If you remember the “Jewish Problem” at the time of Adolf Hitler, well, once you start to say the Jews are a problem, you start thinking of the solution, and the solution they found was a very bad idea – as we all know. So we don’t have to think in terms of problems/solutions – that may lead us to very bad ideas. Instead, we must emphasize change. That change is ongoing, and you have a choice: either you go along with the change, or you reject it. If you reject it, the change will change you, and you will not be happy but will be swept away by the change. In other words, you can solve a problem but there is no solution for a change. There is only one way to face change: to adapt to it.

Ok, thanks very much.

You’re not going to ask me anything about Italian football...?

Who

Ugo Bardi is a member of the Club of Rome, faculty member of the University of Florence, and the author of "Extracted" (Chelsea Green 2014), "The Seneca Effect" (Springer 2017), and Before the Collapse (Springer 2019)