Cassandra has moved. Ugo Bardi publishes now on a new site called "The Seneca Effect."

Sunday, September 18, 2016

The Sower's Way: some comments

Image: sower by Vincent Van Gogh

The publication of the paper "The Sower's way: Quantifying the Narrowing Net-Energy Pathways to a Global Energy Transition" by Sgouridis, Csala, and Bardi, has generated some debate on the "Cassandra's Legacy" blog. In the paper, we argue that the Sower's strategy consists in using the energy obtained from fossil fuels (the seed of the past harvest) in order to build the renewable energy infrastructure (the next harvest) that will replace the old, fossil infrastructure. In other words, we argue for and we quantify a strategy consisting in not eating one's seed corn. 

Among the comments received, here are some extensive ones received by Max Kummerow, together with some answers by Sgouris Sgouridis

Max Kummerow wrote:

Important ideas, of course, in this paper.  A powerful image: eating the seed corn. And a real problem for the transition. Comments and suggestions for extensions:

1. Kummerow: Does it skip past or make a rational assumption about ending growth? That issue deserves more explicit treatment.  Growth in global demand (if I missed  this in the paper, my apologies, but missing it would mean it needs clearer exposition or more emphasis) at present rates (see my Kaya Identity paper draft) must be something like: population 1.1%+incomes (gdp/capita) 1.7% less -1.4% efficiency (E/Y) gains. That nets to 1.4% or doubling time about 51 years, or say, two doublings in a century. Or, 1,2,4 times more energy in a century. 8,16 in two centuries. I think you need some scenarios with different growth rates.

Sgouridis: The paper assumes an end of growth (stabilization) in energy demand per capita. As is also expected/forecasted by the UN to level out, this creates a stabilization in total energy demand. We intentionally and explicitly do not bring into this a discussion on economic figures/GDP. They complicate and divert the issue. What we observe is that in OECD per capita energy demand has been stagnant for a decade or more. The growth in developing countries is slowing down. It is quite logical to assume that demand for energy to provide a decent life has to eventually converge to a point. It is clear that the world cannot support a US or UAE energy lifestyle for everyone on the planet. We assume that eventually there will be of some kind. The “easy" scenario of 2000W/capita by 2100 reflects a bare minimum (see the Marechal et al 2005 reference). My expectation is that a more reasonable estimate should be around 3000W.

2. And, for the scenario where growth ends, steady state economy, no growth in population or incomes (or energy consumption/capita, almost the same thing), how does demand stabilize?

Again, since we do not talk about incomes, for all we care income can increase nominally. It just not imply a growth in energy demand / capita. I agree this is unlikely and those who expect the great decoupling are in for a surprise but the point is demand in the OECD has already stabilized and there is a lot of slack for it to go down. Developing countries can go up by a bit. This convergence means that demand per capita cannot, should not, and need not be expected to grow eternally.

3. I’m sure you are enough of a philosopher and historian to share my worry that the rational paradigm can be overwhelmed by myths. My father, Fred, has been involved in a 60 year controversy about cholesterol and transfats, a place where myths die hard as well. And there are the big ones: religious beliefs. So there are no guarantees that just because science says humanity should do something, that it will get done. The limiting resource (Julian Simon’s insight) is actually human intelligence, or maybe ethics. It’s a very scarce resource right now. I think maybe papers on science should somehow mention the failures of science as a paradigm. The gap between discovery and application is wide in climate science.

These are extremely astute observations and I am personally in agreement. I would also say that it is about ethics rather than intelligence – the whole society has been captured by a cancerous host (financial capitalism) which manages to inject pieces of its DNA individualism, greed, market fetishism and others in essentially all of us turning us into consumable walking replicas to varying extent. This is true for education, science, and . Nevertheless, all these are very difficult to discuss especially in an academic paper. A suggestion of mine for limiting resources can be found here: 

4. A "limits to growth" perspective would ask: What becomes limiting when we start building SET? Your paper is about energy limits to SET. What other limits appear?

Again, I am sure you know of the planetary boundaries paper by Rockström et al. (2009)."A safe operating space for humanity. Nature", 461(7263), 472–475. GHG the nearest physical constraint but others include our handling of phosphate and the phosphorus cycle in agriculture, pollution especially from hard to crack endocrine disruptors, and a lot more.

5. It is hard to get everything into models because of complexity. Another issue is capital constraints. How many dollars?

Definitely an important point. As I mentioned in #1 and #2, we only look at the energy investment not the $ figure of it. Overall energy investment ratios stay below 10% or so for a viable transition. On the capital investment, we can do some rough estimates. According to REN21 we invested 270Billion USD in renewable energy in 2015. This comes down to roughly 2.4$/W. Now since this includes projects that were contracted in the past and projects in regions with high finance costs (e.g. Africa) there is no reason for this cost not to be around 1.5 with today’s technology (the state of the art is 1.4). So with technology advances and scale economies this should go down to around 1$/W by 2035. Since by this time we will need to build a minimum of 6 TW/year, this means an investment of say 6 T$ just for the supply side. For the batteries and long term storage and conversion (Power to liquids) the investment along with the electrification would be at least equal. So overall, 12 USD trillion per year at the peak (it will go down after) should be expected. Now we probably spend already in excess of 7 trillion for energy as fuel bills ( estimates for 2010 are 6.4 trillion) so the order of magnitude is certainly within the realm of what is already happening – it is simply a matter of saner investment. Why waste billions just for buying up land for fracking when you can build RE? This ties in well with my energy credits proposal in #3.

6. And, has anybody noticed that phasing out coal, if I read Jim Hanson correctly will increase net climate forcing by more than a watt/m2? The sulfur aerosols from coal are a major cooling factor, reflecting solar radiation. Hansen said (2009) that net forcing is about 2 watts/m2. But that is net of 1.5 watts cooling from aerosols. So do the cumulative carbon targets account for effects of increased warming as the coal is phased out. (Short term v long term tradeoff.)

This is an interesting question but we have taken the targets as is from the IPCC WGI 2013 report. In my view, they should include the eventual effect of the sulfur aerosols but we need to check this point.

7. The key factor is cumulative carbon. I’m not clear how the graphs in this paper relate to cumulative carbon.

As discussed in #6. Cumulative carbon in each of the carbon scenarios stays within the IPCC indicated limit (I.e. 550, 1000, 1500 by 2100). There are no further emissions from fossil fuels. 

8. What about technological feasibility? Can steel be made with renewable energy? Can everything be done without fossil fuels? How about making nitrogen, for example?

Nitrogen is an easy one – it is abundant and we can get to it either by liquefaction (cryogenic distillation) which is electrically driven or membranes (at lower purities). Hydrogen from electrolysis can be used instead of methane in the Haber-Bosch process. For steel, electric arc furnaces are a direct replacement alternative to CH4 driven ones. There are things that are harder than steel; some large agriculture farming equipment, and ships will need to be supported by either (limited) or power to liquids processes (can be fully renewable). There is a discussion of this but obviously not extensive.

9. Just for curiosity, what is the EROI now and after SET? Lower?

You can see the collective EROEI in the graph in the appendix. It more or less stays flat (PV goes keeps going higher, but eventually it drops).

10. Finally, I think population deserves a lot more attention. Countries like Japan, Germany, Italy are headed for big population declines (absent immigration, a big qualification). So maybe the world could reduce population. That is very cheap and feasible, requiring behavior changes and a little investment. Divergent fertility is evolving the world by “cultural selection” (Kaufman, 2010) towards continued population growth. UN 2050 estimates for 2050 have risen by 800 million between 2002 and 2015 revisions. No end of population growth in sight.

Good points all but also note that UN 2050 estimates fell between the 2010 and 2015 revisions. I think there is a tendency to reach equilibrium but the issue of cultural selection is something that I am not able to discuss.

More to chew on. You could expand this paper into a book on LTG of energy.


  1. so the discussion goes on and on and on: if it is possible to reduce our 'freedom' to only have 2000 W per Person and one child per couple etc. maybe doing it like the udssr getting people misantrophe, drunken and violent - so a big fat worldwide collapse that never ends and no chance of a jevons paradox / rebound effect makes any efforts obsolete? i wonder if we ever can overcome our Maximum Power Point(MPP) evolutionary programming.

  2. If I can live on <300W personally consumed including daily transport, I expect the overheads of the rest of society and those supplying goods and services on my behalf should be able to be easily contained within 2000W (ultimately). My freedom is not compromised significantly.
    This paper appears to me to be contributing far more than an ongoing discussion, for instance, it adds a plank at least to the thesis that it may be too early to give up. (Relevant to me for one)

  3. What is the context of the Julian Simon quote? Wikipedia said that he argued against Malthusian catastrophe and insisted that population was the solution to our problems because more people meant more innovation. Sounds like he's missing a cog or two. Innovation is required because of the problems caused by social complexity, which is caused by population. Innovation is actually an indicator of problems a lot of times.

  4. I have to say that, although for this generation, colonize the solar system could be out of our capabilities, I don't see why, with a good design, do some missions that bring more a more infrastructure to one spot in some another place, like Mars, until these minimal colony reach a selfsustained state and to be allow to grow by itself. Because resources of a new place are locale relative to the colony, there is plenty of resources there to bring a new branch of civilization.
    The problem about resources is that relocate the resources over the solar system costs resources itself, creating a barrier of cost effectiveness or even feasiblility to move from one place to another. It's the cause because break the barrier to start a very small colony is so high in first place.
    So, in terms of resources, when the distances, time and/or energy become a significant barrier, then the only source of resources are "local".

    So, even if Mars or another Solar Systems could be colonized, the new resources only would be relevant to the new colonists in this new places.

    This don't discard our capability to bring this grand vision of humanity expansion over the whole solar system, but it limits a lot the capabitity to raise the energy per capita from the perspective of a Earth inhabitant.

  5. Ugo
    Thanks you for the article and the comment summary.

    It seems to me that a place to start is the most advanced isolated, non-fossil fuel society we have good records about: Edo Japan. Here is a 2 minute clip of Azby Brown describing his book:
    Those interested can find a lot more with a little searching.

    Edo Japan grew from a population of less than 15 million to around 35 million and then flatlined, while improving quality of life and ecological balance from around 1600 to about 1850. So the first order of business is simply understanding what they did. The second order of business would be see how they might have done even better if they had had some solar and wind energy. The third order of business is to study whether they were, in fact, generating enough surplus to support solar and wind, or whether solar and wind can be made to bootstrap themselves. The fourth order of business is to study governance. Everyone agrees that governance in Edo left a lot to be desired. Yet we also have the nagging suspicion that, just as it took very strict orders from the Shogun to stop the pillage of the forests, we may need a Command and Control government in order to accomplish a transition to wind and solar. Exactly how we might go about getting a benign Command and Control government is not at all in Italy have had some bad experience with a guy who supposedly made the trains run on time.

    I suggest that the detailed book by Azby may help guide personal reactions to our crisis, as well as social and political reactions.

    Don Stewart

  6. At a recent meeting at the Seattle Electric Vehicle Association, I presented a paper:
    which presents a case that by combining electric vehicles, the European Passive House, and solar PV, we can maintain a living standard similar to our present day American standards, while reducing the amount of energy we use by a factor of 50, that is, 2% of our current energy expenditures in two major areas: our transportation in terms of automobiles, and the energy needed to operate our residences. Currently, we use about 28,000 kWh/year for the former, and 26,000 kWh/year for the latter per family. So a 50 fold reduction reduces it to 1080 kWh/year/family, or 360 kWh/year/person, or less than 1 kWh/day/person

  7. Comment received by Antonio Zecca, published on his behalf.

    General comment to the writing of Kummerow: Earth is a finite planet. Using resources from Mars, asteroids, Moon is a good subject for sci. fic. movies. Therefore resources (all of them) are finite [not questioning how much: they are finite]. Moving a few billions humans to a different planet is a subject for Star Trek. This issue does not deserve any more explicit treatment.

    General conclusion. Energy transition is not an option in the future of humankind: it is unavoidable - we do not have a choice: we will be forced to go to a steady state economy /population/consumption/pro-capite consumption [of everything we are used to]: i.e. a steady state in energy and energy pro-capite consumption. This is expressed currently as: we are forced to make an energy transition.

    In reality there is one more road: reducing the human population by several billions within a few decades: there are many ways in which this could happen. All of them share a common strategy: avoid to make an energy transition. I hope that Max Kummerow is not in favor of this road. The goal of the paper by Sgouridis, Csala, and Bardi is to "figure out" possible ways to make the energy transition in the next decades. We have one method only to look at the future and it is to make assumptions (scenarios) about the behavior of mankind in the next decades. Making assumptions is subjective - even when guided by good will and science - and therefore other authors will propose different scenarios.

    It would be nice Kummerow writing a paper on this subject instead of asking Sgouridis, Csala and Bardi to make revisions.

    At last, again: the subject is "how to perform the transition"; not discussing whether we will see a transition or not.

    Antonio Zecca 19sept16



Ugo Bardi is a member of the Club of Rome, faculty member of the University of Florence, and the author of "Extracted" (Chelsea Green 2014), "The Seneca Effect" (Springer 2017), and Before the Collapse (Springer 2019)