Showing posts with label biosphere. Show all posts
Showing posts with label biosphere. Show all posts

Monday, May 18, 2020

Victor Gorshkov (1935-2019): a life for the biosphere.


The basic concept of the biotic regulation of Earth's temperature according to Victor Gorshkov and his coworkers. The figure shows the potential function U(T) for the global mean surface temperature. Stable states correspond to pits, unstable states to hills. The modern value of +15°C (288 K) corresponds to an unstable state (2, thin line). Physically stable states correspond to a frozen Earth (state 1) and a red-hot Earth (state 3). We are precariously living in a shallow minimum of potential energy that defines the habitable zone for the biosphere. This state can be created and maintained only by a healthy biosphere.



On May 10th, 2019, Victor Georgievic Gorshkov died at 83 in St. Petersburg, after a life dedicated to scientific research that he continued to perform up to nearly the last moment. One year later, I thought I could publish this small homage to his figure and his work. His longtime coworker and companion, Anastassia Makarieva, was also kind enough to write a summary of Gorshkov's life and work for this blog.

In many ways, science follows the 20/80 rule, sometimes called the "Pareto's rule," which tells that 80% of the work is performed by just 20% of the performers. But it may well be that Pareto was an optimist if his rule is applied to science. It seems more likely that science works because, as Newton said long ago, a small number of creative "giants" emerge out of the general mediocrity. One of these creative people, a true giant of science, was Victor Gorshkov (1935-2019), researcher at the Petersburg Nuclear Physics Institute, in Russia.

Understanding Gorshkov's work and ideas takes some time and patience. He was trained as a theoretical physicist and his approach was very different from the way most western scientists operate in the field of ecology. I would say that it was exactly this difference that attracted me and made me tackle the non-trivial effort to read one of two main books: Biotic Regulation of the Environment, 2000.  (see also Physical and Biological Bases of Life Stability, 1995). Reading Victor's work is a refreshing experience: you feel the intellectual freedom that pervades it, the sheer beauty of exploring new concepts and new ideas. And that's true also for other ideas proposed by Gorshkov and his coworkers, such as the concept of the "biotic pump." (you can learn about these and other ideas on the "Biotic Regulation site").

Russian science suffers from many of the same problems that plague science in the West: lack of resources, hyperspecialization, bureaucracy, creativity stifling, "Superstar scientists," and more. But, apparently, it can still produce outstanding researchers. Gorshkov's work is important for many reasons but I would say that one is how it highlights how in the West we may well be "hypermodelized." We tend to put a lot of trust in complex, multi-parameter models and, sometimes, we tend to think that models are the reality. Models can easily lead us astray and they can also generate a backlash with non-scientists: a good example is the recent debacle of the multiparameter model of virus diffusion used by the research group of professor Neil Ferguson, in London.

Gorshkov's approach was very different: he used physics to highlight the boundaries of the system and then exploring its behavior. This approach is relevant for climate science: in the West, models are considered the main -- if not the only -- tool to understand climate change. They are remarkable tools developed by highly competent people. But these models cannot normally tell us the limits of stability of the system that Gorshkov and his coworkers had already identified in their work, and that only recently have started to make their way in the Western debate. This is the truly critical issue of climate change:are tipping points going to destroy our civlization?

More than all, Gorshkov's work was all a homage to the great power of the biosphere and an attempt to stop its destruction. On this point, the best Russian and Western thinkers are of the same opinion. But can we stop the destruction? Not easy, but we must continue to try. Victor Gorshkov himself was an optimist and we can hope he will turn out to have been right.

Victor Gorshkov, his life, and the discovery of biotic regulation

by Anastassia Makarieva

Victor Gorshkov was born on 12th July 1935 in Leningrad to a family of two physicists. He was born an optimist and he lived a very happy life.



This is Victor’s photo taken in the yard of their apartment house on Vasilyevsky Island, St. Petersburg (then Leningrad) historical district, approximately 1937. Many of the kids behind him probably died of hunger during the Nazi’s siege of Leningrad in 1941-1943. The Radium Institute where Victor’s father worked was evacuated to Kazan, Victor’s family followed and survived.


He became a theoretical physicist. I was Victor’s student and, since October 1994, I have been his coworker until he died on the 10th of May 2019. Describing him is akin to describing the Universe. By common judgment, Victor belonged to the kind of cats who walk by themselves.

He used to tell me that there are five spheres of life, each able to completely fulfill one’s realization as a personality. They were Nature, Science, Women, Music, and Tennis. He lived them all. Victor played the piano very well and he was a fervent tennis player. He was a skillful dancer and very fond of alpine skiing.

Among the five, Nature and Science (or Science and Nature, the order was never quite clear), appeared to be the main ones. Victor spent all his free time completely disconnected from the civilization in the remote wilderness areas of Russia, in the basins of Ob, Yenisey, and on the White Sea.



 This photo was taken about 80 years after the first one, during our last trip together to the White Sea.


In the late 1970s, Victor finally merged his interests in Nature and Science and turned away from the more conventional areas of theoretical physics where he had been quite successful. He founded a new research topic “Physical and Biological Bases of Life Stability” in the Theoretical Department of Petersburg Nuclear Physics Institute. He formulated the concept of the biotic regulation of the environment according to which natural ecosystems create and control the environment favorable for their existence.

Unique to Victor’s theory was a joint quantitative consideration of the environmental, ecological, and genetic characteristics of the biota. Victor started from the consideration of the carbon cycle by noting the extremely short turnover time of carbon in all major pools (approx. ten years) compared to the characteristic times of observable environmental stasis.

Could the biota adapt to rapid environmental changes it can itself induce? Proving that impossible would constitute proof that the biota controls the environment rather than adapts to it. Such proof required analyzing the rate of generation of genetic variability in various species and contrasting them with the rate of environmental change by finding some transitional dimensions between the two.

With his training in theoretical physics, Victor originally knew nothing about genetics and biology in general and had to learn everything from scratch. For example, he told me that, in the beginning, he was very irritated by the “DNA word” and tried to avoid papers mentioning it. Several years of intense self-learning enabled him not just to make the necessary conclusions for the multidisciplinary concept of the biotic regulation, but also arrive at results appreciated by the more narrow circle of professionals dealing exclusively with evolution or ecology.

In particular, his idea was that if adaptation is governed by intraspecific genetic variability, then the largest and least numerous species (e.g. mammals) should have been adapting by many orders of magnitude more slowly than the smallest and most numerous (like unicellular ones). The contrasting reality is that all species, big and small, give rise to new species at approximately the same rate, once in a few million years. These estimates testified against intraspecific genetic adaptation to an ever-changing environment. Rather, the environmental change came along as the result of some infrequent spontaneous evolutionary shifts of the biota.

Victor was an outstanding theoretical physicist. He taught me, “Be not afraid of not knowing other people’s misconceptions. It is a big asset. Reach out with a free mind, formulate your own ideas and use them as the compass to navigate across the seemingly chaotic evidence, seeing patterns, and verifying them.”

He also warned, “Never leave a remotest, smallest corner of the problem unattended. It is there that the solution (or self-disproval) may hide. When after a long work you feel totally lost and overwhelmed by controversial evidence and considerations, do not yield to despair – it is often a sign that the solution is close”.

Victor built the biotic regulation theory from several major blocks – carbon cycle, climate stability, the concept of the biotic pump of atmospheric moisture, genetic stability, and more. Along this remarkable researcher’s path, there was one discovery he was especially overwhelmed by. He never ceased to emphasize its importance, considered it to be a key point of the theory. His final ecological work reviews and develops this discovery. It is about the effect of large animals on the ecosystem.

The body sizes of living organisms range from less than one micron to several meters. Everything in life depends on body size. These dependencies are usually described by dimensionless scaling laws (called allometries in biology) of the simplest form dx/x = a dy/y. Is there a characteristic body size meaningful for life stability in general?

Life features a conspicuous yet enigmatic dichotomy. It consists of immobile organisms like trees and locomotive organisms like animals. Plants receive energy from solar photons and generate net primary production at a rate of about P = 1 W/m2.

On the other hand, as Victor discovered from his extensive analysis of published literature, all living beings on a grand average consume energy at a rate of about q = 103 W/m3. The ratio of these two fundamental constants has the dimension of linear size, L = P/q = 1 mm. This critical body size divides life into the big and the small, the immobile and the locomotive, into the ecologically stable and the ecologically unstable.
j = ql3/l2


The dependency of the energy consumption, j, per unit area in organisms of different sizes versus primary production P. Beyond the critical body size, locomotion is a must. Smaller animals can live without active locomotion.


Organisms of linear size l smaller than L, consume less power than the biosphere generates, j = ql3/l2 < P per unit area of their projection on the Earth’s surface (l2). Such organisms do not need to destroy plants. They can sit and wait until the dead plant parts fall down to become their food. They do not need to move. They can form a continuous cover.

In contrast, species larger than the critical body size cannot sit and wait. They require more food per unit area and per unit time than the biosphere is able to produce. Such organisms have to move and to destroy the biomass of live plants. Each such species, which evolution continuously makes bigger and bigger, represents a time bomb for the ecosystem.

Born to destroy live plants, as soon as such organisms go out of their permissible green corridor (low population densities), they can eliminate primary producers and thus life itself. It is just a matter of time when a big species with a sufficient destructive potential appears in the course of evolution, which generally moves life towards spontaneous decay.


A forest enclosure for wild boars who destroyed all plants on the ground preventing tree re-growth


So, Homo Sapiens arrived and, governed by our innate instinct to destroy, we have been destroying the biosphere on a global scale. That was nothing new – many big species did the same to their ecosystem.

Victor was an optimist. He thought that a unique property of humans – the ability to sometimes overcome their genetic instincts with science-based reason – would allow them not only to stop the degradation they inflict themselves but – by returning to the permissible green corridor and not allowing any other species going out of it – probably even to become the guardians of life stability on Earth.





Monday, August 15, 2016

Five billion years of energy supply: the "stereosphere" and the upcoming photovoltaic revolution

It seems to be popular nowadays to maintain that photovoltaic energy is just an "extension" of fossil energy and that it will fade away soon after we run out of fossils fuels. But photovoltaics is much more than just a spinoff of fossil energy, it is a major metabolic revolution in the ecosystem, potentially able to create a "stereosphere" analogous to the "biosphere" that could last as long as the remaining lifetime of the earth's ecosystem and possibly much more. Here are some reflections of mine, not meant to be the last word on the subject, but part of an ongoing study that I am performing. You can find more on a similar subject in a paper of mine on Biophysical Economics and Resource Quality, (BERQ)






"Life is nothing but an electron looking for a place to rest," is a sentence attributed to Albert Szent-Györgyi. It is true: the basis of organic life as we know it is the result of the energy flow generated by photosynthesis. Sunlight promotes an electron to a high energy state in the molecule of chlorophyll. Then, the excited electron comes to rest when a CO2 molecule reacts with hydrogen stripped away from an H2O molecule in order to form the organic molecules that are the basis of biological organisms. That includes replacing degraded chlorophyll molecules and the chloroplasts that contain them with new ones. The cycle is called "metabolism" and it has been going on for billions of years on the earth's surface. It will keep going as long as there is sunlight to power it and there are nutrients that can be extracted from the environment. 

But, if life means using light to excite an electron to a higher energy state, there follows that chlorophyll is not the only entity that can do that. In the figure at the beginning of this post, you see the solid state equivalent of a chlorophyll molecule: a silicon-based photovoltaic cell. It promotes an electron to a higher energy state; then this electron finds rest after having dissipated its potential by means of chemical reactions or physical processes. That includes using the potentials generated to manufacturing new photovoltaic cells and the related structures to replace the degraded ones. In analogy with the biological metabolism, we could call this process "solid state metabolism". Then, the similarities between the carbon-based metabolic chain and the silicon-based one are many. So much that we could coin the term "stereosphere" (from the Greek term meaning "solid.") as the solid-state equivalent of the well known "biosphere". Both the biosphere and the stereosphere use solar light as the energy potential necessary to keep the metabolic cycle going and they build-up metabolic structures using nutrients taken from the earth's surface environment.

The main nutrient for the biosphere is CO2, taken from the atmosphere, while the stereosphere consumes SiO2, taking it from the geosphere. Both metabolic chains use a variety of other nutrients: the stereosphere can reduce the oxides of metals such as aluminum, iron, and titanium, and use them as structural or functional elements in their metallic form; whereas the biosphere can only use carbon polymers. The biosphere stores information mostly in specialized carbon-based molecules called deoxyribonucleic acids (DNA). The stereosphere stores it mostly in silicon-based components called "transistors". Mechanical enactors are called "muscles" in the biosphere and are based on protein filaments that contract as a consequence of changing chemical potentials. The equivalent mechanical elements in the stereosphere are called "motors" and are based on the effects of magnetic fields on metallic elements. For each element of one of these systems, it is possible to find a functional equivalent of the other, even though their composition and mechanisms of operation are normally completely different.

A major difference in the two systems is that the biosphere is based on microscopic self-reproducing cells. The stereosphere, instead, has no recognizable cells and the smallest self-reproducing unit is something that could be defined as the "self-reproducing solar plant factory." A factory that can build not only solar plants but also new solar plant factories. Obviously, such an entity includes a variety of subsystems for mining, refining, transporting, processing, assembling, etc. and it has to be very large. Today, all these elements are embedded in the system called the "industrial system." (also definable as the "technosphere"). This system is powered, at present, mainly by fossil fuels but, in the future, it would be transformed into something fully powered by the dissipation of solar energy potentials. This is possible as long as the flow of energy generated by the system is as large or larger than the energy necessary to power the metabolic cycle. This requirement appears to be amply fulfilled by current photovoltaic technologies (and other renewable ones).

A crucial question for all metabolic processes is whether the supply of nutrients (i.e. minerals) can be maintained for a long time. About the biosphere, evidently, that's the case: the geological cycles that reform the necessary nutrients are part of the concept of "Gaia", the homeostatic system that has kept the biosphere alive for nearly four billion years. About the stereosphere, most of the necessary nutrients are abundant in the earth's crust (silicon and aluminum being the main ones) and easily recoverable and recyclable if sufficient energy is available. Of course, the stereosphere will also need other metals, several of which are rare in the earth's crust, but the same requirement has not prevented the biosphere from persisting for billions of years. The geosphere can recycle chemical elements by natural processes, provided that they are not consumed at an excessively fast rate. This is an obviously complex issue and we cannot exclude that the cost of recovering some rare element will turn out to be a fundamental obstacle to the diffusion of the stereosphere. At the same time, however, there is no evidence that this will be the case.

So, can the stereosphere expand on the earth's surface and become a large and long-lasting metabolic cycle? In principle, yes, but we should take into account a major obstacle that could prevent this evolution to occur. It is the "Allee effect" well known for the biosphere and that, by similarity, should be valid for the stereosphere as well. The idea of the Allee effect is that there exists  a minimum size for a biological population that allows it to be stable and recover from perturbations. Too few individuals may not have sufficient resources and reciprocal interactions to avoid extinction after a collapse. In the case of the stereosphere, the Allee effect means that there is a minimum size for the self-reproducing solar plant factory that will allow it to be self-sustaining and long-lasting. Have we reached the "tipping point" leading to this condition? At present, it is impossible to say, but we cannot exclude that it has been reached or that it will be reached before the depletion of fossil fuels will bring the collapse of the current industrial system.

The next question is whether a self-sustaining stereosphere can coexist with the organic biosphere. According to Gause's law, well known in biology, two different species cannot coexist in the same ecological niche; normally one of the two must go extinct or be marginalized. Solid state and photosynthetic systems are in competition with each other for solar light. There follows that the stereosphere could replace the biosphere if the efficiency of solid state transduction systems were to turn out higher than that of photosynthetic systems. But this is not obvious. PV cells today appear to be more efficient than photosynthetic plants in terms of the fraction of solar energy processed but we need to consider the whole life cycle of the systems and, at present, a reliable assessment is difficult. We should take into account, anyway, that solid state creatures don't need liquid water, don't need oxygen, are not limited to local nutrients, and can exist in a much wider range of temperatures than biological ones. It means that the stereosphere can expand to areas forbidden to the biosphere: dry deserts, mountaintops, polar deserts, and more. Silicon based creatures are also scarcely affected by ionizing radiation, so they can survive in space without problems. These considerations suggest that the stereosphere may occupy areas and volumes where it is not in direct competition with the biosphere.

The characteristics of the stereosphere also allow it the capability of surviving catastrophes that may deeply damage the biosphere and that will eventually cause its extinction. For instance, the stereosphere could survive an abrupt climate change (although not a "Venus Catastrophe" of the kind reported by James Hansen). Over the long run, in any case, the earth's biosphere is destined to be sterilized by the increasing intensity of the solar irradiation over times of the order of a billion years. (and smaller for multicellular organisms). The stereosphere would not be affected by this effect and could continue existing for the five billion of years in which the sun will remain in the main sequence. Possibly, it could persist for much longer, even after the complex transformations that would lead the sun to become a white dwarf. A white dwarf could, actually power PV systems perhaps for a trillion years!

A more detailed set of considerations of mine on a related subject can be found in this article on "Biophysical Economics and Resource Quality, BERQ). 


Notes: 

1. I am not discussing here whether the possible emergence of the stereosphere is a good or a bad thing from the viewpoint of humankind. It could give us billions of years of prosperity or lead us to rapid extinction. It seems unlikely, anyway, that humans will choose whether they want to have it or not on the basis of rational arguments while they still have the power to decide something on the matter. 

2. The concept of a terrestrial metabolic system called the stereosphere is not equivalent, and probably not even similar, to the idea of the "technological singularity" which supposes a very fast increase of artificial intelligence. The "self-reproducing solar plant factory" needs not be more intelligent than a bacterium; it just needs to store a blueprint of itself and instructions about replication. Intelligence is not necessarily useful for survival, as humans may well discover to their chagrin in the near future.

3. About the possibility of a photovoltaic-powered Dyson sphere around a white dwarf, see this article by Ibrahim Semiz and Salim O˘gur.

4. The idea of "silicon-based life" was popularized perhaps for the first time by Stanley Weinbaum who proposed his "Pyramid Monster" in his short story "A Martian Odissey" published in 1933. Weinbaum's clumsy monster could not exist in the real universe, but it was a remarkable insight, nevertheless. 








Friday, June 17, 2011

Man vs. Gaia

Image from "deviantart.com"

This cartoon, signed by "humon," shows one aspect of the fight between humans and their environment; also known as "Gaia". The concept is the same as that expressed by George Carlin as, "The planet is fine, the people are fucked".

But even Gaia herself, poor lady, might not emerge unscathed from the fight. She may be robust, but she is not eternal. Look at this graph, from a paper by Franck, Bounama and Von Bloh,


As you see, the earth's biosphere, Gaia, peaked with the start of the Phanerozoic age, about 500 million years ago. Afterwards, it declined. Of course, there is plenty of uncertainty in this kind of studies, but they are based on known facts about planetary homeostasis. We know that the sun's irradiation keeps increasing with time at a rate of around 1% every 100 million years. That should have resulted in the planet warming up, gradually, but the homeostatic mechanisms of the ecosphere have maintained approximately constant temperatures by gradually lowering the concentration of CO2 in the atmosphere. However, there is a limit: the CO2 concentration cannot go below the minimum level that makes photosynthesis possible; otherwise Gaia "dies".

So, at some moment in the future, planetary homeostasis will cease to be able to stabilize temperatures. When we reach that point, temperatures will start rising and, eventually, the earth will be sterilized. According to Franck et al., in about 600 million years from now the earth will have become too hot for multicellular creatures to exist.

Of course, the extinction of the biosphere is not for tomorrow or, at least, the calculations say so. But it is like estimating one's lifespan from statistical data. Theoretically, the homeostatic mechanisms that operate your body could keep you alive until reach a respectable age; sure, but homoeostasis is never perfect. For instance, there are mechanisms in your body designed to reverse the effects of traumas. You may expect these mechanisms to work well if you are young but, if you are hit by a truck at full speed, well, you end up on the wrong side of the life expectancy statistics.

Similar considerations apply to Gaia. Theoretically, the planetary homeostatic mechanisms should keep Gaia alive for hundreds of millions of years, but what about major perturbations, some planetary equivalent of being hit by a truck? Would Gaia be able to recover from a human caused runaway greenhouse catastrophe?

We cannot say for sure. What we can say is that we are living in a period called the "sixth extinction," similar to other major past extinctions. In most cases, these extinctions appear to have been caused by an increase in the concentration of greenhouse gases in the atmosphere. The sixth extinction, too, is taking place in correspondence to a rise of the concentration of carbon dioxide in the atmosphere that may never have happened so fast in the history of the planet. This rapid rise is also taking place under a solar irradiation that has never been so high as it is today. We can't rule out that the sixth extinction will be the last one.

So, in the fight of man vs. Gaia neither one might be left standing. That's just a possibility, of course, but one thing is certain: in this fight, the enemy is us. 



Thanks to Antonio Turiel for the link to humon's cartoon and to Weissbach for the link to George Carlin's movie

Who

Ugo Bardi is a member of the Club of Rome, faculty member of the University of Florence, and the author of "Extracted" (Chelsea Green 2014), "The Seneca Effect" (Springer 2017), and Before the Collapse (Springer 2019)